estadística
es una ciencia matemática que se refiere a la recolección, estudio e interpretación de los datos obtenidos en un estudio. Es aplicable a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, ciencias de la salud como la Psicología y la Medicina, y usada en la toma de decisiones en áreas de negocios e instituciones gubernamentales.La Estadística se divide en dos ramas:La estadística descriptiva, que se dedica a los métodos de recolección, descripción, visualización y resumen de datos originados a partir de los fenómenos en estudio. Los datos pueden ser resumidos numérica o gráficamente. Ejemplos básicos de descriptores numéricos son la media y la desviación estándar. Resúmenes gráficos incluyen varios tipos de figuras y gráficos.La inferencia estadística, que se dedica a la generación de los modelos, inferencias y predicciones asociadas a los fenómenos en cuestión teniendo en cuenta lo aleatorio e incertidumbre en las observaciones. Se usa para modelar patrones en los datos y extraer inferencias acerca de la población de estudio. Estas inferencias pueden tomar la forma de respuestas a preguntas si/no (prueba de hipótesis), estimaciones de características numéricas (estimación), pronósticos de futuras observaciones, descripciones de asociación (correlación) o modelamiento de relaciones entre variables (análisis de regresión). Otras técnicas de modelamiento incluyen ANOVA, series de tiempo y minería de datos.Ambas ramas (descriptiva e inferencial) comprenden la estadística aplicada.
TEOREMA DE CHEBYSHEV
la desigualdad de Chebyshev es un resultado estadístico que ofrece una cota inferior a la probabilidad de que el valor de una variable aleatoria con varianza finita esté a una cierta distancia de su esperanza matemática o de su media; equivalentemente, el teorema proporciona una cota superior a la probabilidad de que los valores caigan fuera de esa distancia respecto de la media. El teorema es aplicable incluso en distribuciones que no tienen forma de "curva de campana" y acota la cantidad de datos que están o no "en medio".El teorema de Chebyshev se aplica a cualquier tipo de datos, pero sólo nos indica “por lo menos que porcentaje” debe caer entre ciertos límites. Pero para casi todos los datos, el porcentaje real de datos que cae entre esos limites es bastante mayor que el que especifica el teorema de Chebyshev.
COMENTARIO:
El teorema de chebyshev mas que todo nos indica que porcentaje debe caer entre cada limite
y de que los valores caigan fuera de ese distancia respecto de la media.
No hay comentarios:
Publicar un comentario